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The report below is inspired by the Global AI Supercomputer concept pre-
sented by Prof. Geoffrey Fox and Dr. Judy Qiu. It is closely related to the
Twister2 computing framework [1] developed at the Digital Science Center of
the Indiana University.

1 Introduction

The amount of data generated by day-to-day operations have been exponentially
increasing during the past couple of decades. The problem of analyzing and de-
cision making based on these data, has also convoluted owing to the increased
data volumes, diversified/ unstructured formats and added inconsistencies in
the data streams. Advent of the World Wide Web, the Internet, Internet of
Things (IoT), etc. are some technologies which have directly contributed to
this paradigm shift. Hence the term, ”Big Data” has now become a norm in
the scientific domains. In addition to the accumulation of terabytes of data,
consumers/ users of the insights of data have also grown in numbers, they come
up with more complex requirements in the form of queries, and the demand
for faster insights is ever increasing. Hence, there is an urgent need for a data
analytics framework to ingest and analyze such data workloads.

Furthermore, parallel and distributed computing are essential to process big
data owing to the data being naturally distributed and processing often re-
quiring high performance in compute, communicate and I/O arenas. Over the
years, the High Performance Computing community has developed frameworks
such as message passing interface (MPI) [2] to execute computationally inten-
sive parallel applications efficiently. HPC applications target high performance
hardware, including low latency networks due to the scale of the applications
and the required tight synchronous parallel operations. Big data applications
have been developed for commodity hardware with Ethernet connections seen
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in the cloud. Because of this, they are more suitable for executing asynchronous
parallel applications with high computation to communication ratios. Recently,
we have observed that more capable hardware comparable to HPC clusters is
being added to modern clouds due to increasing demand for cloud applications
in deep learning and machine learning. These trends suggest that HPC and
cloud are merging, and we need frameworks that combine the capabilities of
both big data and HPC frameworks.

A common concern in big data frameworks is that the data can be too big to
fit into the memory of a node or a cluster. In another aspect, the load balancing
of data, as the data is generated across an extreme variety of data sources. Tem-
poral variation of arrival times of data is another concern, which requires the
frameworks to add batch data processing as well as streaming data processing
in the pipeline. Difference sets of data may have variable processing time across
data and iterations of algorithms.

Another major concern in the big data analytics arena is the question of
scheduling workloads, whether to use coarse-grained scheduling or fine-grained
scheduling. Coarse-grained scheduling would allow the framework to spawn
executing elements at the start of the framework, and schedule workloads dy-
namically among these computing elements. While, fine grained scheduling
framework would spawn executing elements as and when it receives a work-
load. Coarse-grained scheduling is deemed as a more favorable apporach for
realtime/ streaming data analytics, while fine-grained has an inherent overhead
of acquiring resources before execution. Apache Spark [3] is a very popular
framework which utilizes coarse-grained resource scheduling. While Spark has
been successful in data analytics using the resilient distributed datasets (RDDs)
[4], there is a perception in the high performance computing community that
people often use Spark as a framework for distributed computing/ workload
distribution rather than using it for data analytics. Due to this, the users are
limited to use coarse grained scheduling, where as for the purpose of distributed
computing and workload distribution, a combination of coarse grained and fine-
grained scheduling together would be much more beneficial.

This article attempts to propose a model in which both the coarse-grained
and fine-grained resources can scheduled depending on the users requirements.
Digital Science Center at the Indiana University is currently involved in elevating
its data analytics platform, Twister2 to have this capability, and and the author
sees it as an interesting research topic which he would be personally involved
in. The rest of the article is organized is as follows. Section 2 would explain
the dataflow model, section 3 would look at a brief history of dataflow and data
analytics frameworks. Section 4 will discuss the Twister2 framework. Section 5
will discuss the new additions proposed to add the aforementioned capabilities.
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2 Dataflow Model

The dataflow computation model has been presented as a way to hide some
of the system-level details from the user in developing parallel applications. It
is a software paradigm based on the idea of disconnecting computational ac-
tors into stages (pipelines) that can execute concurrently. Dataflow can also be
called stream processing or reactive programming. The most obvious example
of data-flow programming is the subset known as reactive programming with
spreadsheets. As a user enters new values, they are instantly transmitted to the
next logical ”actor” or formula for calculation. With dataflow, an application is
represented as a graph, more specifically a DAG (Directed Acyclic Graph) with
nodes doing computations and edges indicating communications between the
nodes. A computation at a node is activated when it receives events through
its inputs. A well-designed dataflow framework hides the low-level details such
as communications, concurrency, and disk I/O, allowing the developer to focus
on the application itself.

Every major big data processing system has been developed according to
the dataflow model, and the HPC community has also developed asynchronous
many tasks systems (AMT) according to the same model. AMT systems mostly
focus on computationally intensive applications, and there is ongoing research
to make them more efficient and productive. We find that big data systems
developed according to a dataflow model are inefficient in computationally in-
tensive applications with tightly synchronized parallel operations, while AMT
systems are not optimized for data processing.

At the core of the dataflow model is an event-driven architecture where tasks
act upon incoming events (messages) and produce output events. In general, a
task can be viewed as a function activated by an event. The cloud-based services
architecture is moving to an increasingly event-driven model for composing ser-
vices in the form of Function as a Service (FaaS). FaaS is especially appealing
to IoT applications where the data is eventbased in its natural form. Coupled
with microservices and server-less computing, FaaS is driving next-generation
services in the cloud and can be extended to the edge.

3 History

Data workloads have been conventionally categorized into batch and streaming.
Recently emergence of machine learning has added another dimension to the
data analytics workloads. During the past couple of decades, there were several
’waves’ of analytics frameworks developed to support these workloads. Advent
of Massage Passing Interface (MPI) [5], Bulk Synchronous Parallel (BSP) model
[6] were some early notable technological breakthroughs. Followed by BSP, it
was the era of Map-Reduce model [7], one of the most successful Big Data
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technology paradigms of the recent years. There were number of technology
frameworks built upon Map Reduce, such as Apache Hadoop [8], Apache Hive
[9], Apache Pig [10]. These technologies were catering to solve the batch ana-
lytics problem.

Recently, Apache Spark [11] has taken over Hadoop to be the dominant
technology in the batch analytics domain. Streaming analytics came into the
Big Data domain with the popularization of IoT devices and the internet, which
generates large number of sparse, ad-hoc, diverse data streams. Apache Spark
Streaming [3], Apache Storm [12], Apache Flink [13, 14], Apache Samza [15]
are the dominant streaming analytics frameworks at present. Machine learning
(ML) has opened up a new dimension in the Big Data analytics domain, where
users can develop models on top of large volumes of data. Apache Spark Ml-
lib [3] and Apache Mahout [16] are the pioneering frameworks in the machine
learning domain and Harp-DAAL Project [17] is an effort to introduce ML ca-
pabilities on Hadoop.

History of data analytics frameworks mentioned here, can be categorized
into mainly 4 epochs.

• Generation 1:
Map-Reduce (MR) based data analytics frameworks merely focusing on
Batch data analytics. This was the inception of data analytics led by
Google. The framework only had a crude set of tools to crunch a consid-
erable set of data which could not have been efficiently analyzed by the
traditional RDBMS (Relational DataBase Management) systems.

• Generation 2:
Second generation of data analytics frameworks introduced interactive an-
alytics into the picture. Apache Tez is a good example of this. It is an
extensible framework for building high performance batch and interactive
data processing applications, coordinated by YARN in Apache Hadoop.
Second generation improved the MapReduce paradigm by dramatically
improving its speed, while maintaining MapReduce’s ability to scale to
petabytes of data. A common characteristic of these frameworks was that
they were using dataflow concepts as a Directed Acyclic Graph (DAGs)

• Generation 3:
Third generation of data analytics frameworks introduced realtime data
analytics and iterative processing into the frameworks. Apache Spark was
the most notable of these frameworks for their contribution of using Re-
silient Distributed Datasets (RDDs) for data analytics. These frameworks
are the most commonly used data analytics tools even in the current indus-
try. Because of their ability to handle near-real time streaming workloads.
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• Generation 4:
Apache Flink claims that they are a ground breaking framework where
they introduce true real time streaming analytics in to the industry. These
fraworks are capable of handling hybrid dataflows which contained batch
and streaming analytics. These also attempt to support cyclic dataflows
and a native iterative processing approach.

4 Workload Scheduling

Granularity is the extent to which a system is broken down into small parts,
either the system itself or its description or observation. It is the extent to which
a larger entity is subdivided. For example, a yard broken into inches has finer
granularity than a yard broken into feet. As mentioned in the Introduction,
there are two main schools of thought when it comes to workload scheduling
granularity. First is, Coarse-grained scheduling and the other is Fine-grained
scheduling.

4.1 Fine-grained scheduling

In “fine-grained” mode, each executor runs as a separate computing task. This
allows multiple instances of workloads to share cores at a very fine granularity,
where each application gets more or fewer cores as it ramps up and down, but
it comes with an additional overhead in launching each task. This mode may
be inappropriate for low-latency requirements like interactive queries or serving
web requests.

In a JVM (Java Virtual Machine) based environment, eventhough tasks in
fine-grained will relinquish cores as they terminate, they will not relinquish
memory, as the JVM does not give memory back to the Operating System.
Since most of the data analytics frameworks were Java based, this was seen as a
major bottleneck. Additionally, executors are brought up lazily, hence it would
add more overhead to the task execution.

4.2 Coarse-grained scheduling

In “coarse-grained” mode, each executor runs as a single resource task. Ex-
ecutors are brought up eagerly when the application starts, until a specified
maximum is reached. The application then has the ability to utilize these re-
sources for execution.

The benefit of coarse-grained mode is much lower startup overhead, but at
the cost of reserving computing resources for the complete duration of the appli-
cation. To alleviate this bottleneck, frameworks have attempted to use dynamic
resource allocation, which could be seen as a hybrid approach.
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The downside of resorting into either of these extremes would constrain data
analytics platforms to use a below par resource scheduling mechanism for their
usecases. As we see, the resource scheduling is very much dependant on the
application and the users should not be constrained to use a particular resource
because of the limitations of the framework.

The current issue with the granularity of the workloads is, users tend to se-
lect frameworks such as Apache Spark purely on the basis of distributing their
workloads, because of its convenient API. This is not the intended use of such
frameworks and hence it would be suboptimal in the long run.

4.3 Unified Batch, Streaming and Iterative Analytics

It is an evident fact in the Big Data analytics community that a practical ap-
plication data analytics scenario encompasses more than one out of the batch,
streaming and iterative data analytics approaches. But, there is no unified
framework which could support this requirement. Murry et al [18] identified
this opportunity when they developed the framework Naiad. More recently,
Google has re-looked at the analytics problem with a different point of view,
when they introduced the Google Cloud Dataflow engine [19], where they look at
streaming analytics as unbounded data streams and batch analytics as bounded
data sets. They propose a hybrid approach, where they combine both types of
workloads using a common programming environment, Apache Beam [20].

5 Twister2

Twister2, developed by the Digital Science Center of the Indiana University,
provides a data analytics hosting environment where it supports different data
analytics including streaming, data pipelines and iterative computations. Un-
like many other big data systems that are designed around user APIs, Twister2
is built from bottom up to support different APIs and workloads. Our vision for
Twister2 is a complete computing environment for data analytics. One major
goal of Twister2 is to provide independent components, that can be used by
other big data systems and evolve separately.

The current implementation of Twister2 is capable of handling batch, stream-
ing and iterative data analytics workloads independently. The goal of the au-
thor’s study is to merge the capabilities into a unified environment. The study
encompass the area of enabling Twister2 to handle coarse grained and fine
grained workloads on the same environment.
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6 Hierarchical Task Graphs (HTG)

The main point of extension for the new capability is hierarchical task graph
(HTG). This would look at coarse-grained workloads and fine-grained work-
loads as a hierarchy of data flow graphs and schedule the resources accordingly.
Hence, this would allow users to have the autonomy of resources like in the
fine-grained resource scheduling without compromising the benefits of coarse
grained resource scheduling.

The hierarchical task graph strategy is to compose multiple independent/dependent
dataflow task graphs into a single entity. A dataflow task graph consists of mul-
tiple subtasks which are arranged based on the parent-child relationship between
the tasks. In general, a dataflow task graph consists of multiple vertices and
edges to connect those vertices. The vertices represent the characteristics of
computations and edges represent the communication between those computa-
tions. The simple representation of hierarchical task graph is shown in Figure
1.

Figure 1: Example Hierarchical Task Graph

6.1 Related Work

A similar approach was proposed by Zhe Ma et al [21], where they propose opti-
mal and fast heuristic algorithms to schedule task clusters based on interleaving
subtasks. Their algorithm will take into account the situation when multiple
tasks are required to run concurrently and interleave their separated subtasks
schedules to generate a new united schedule. Even though it is not directly
related, it is one of the first instances where scheduling is done in a hierarchical
manner.
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Alefragis et al [22] proposed a method that uses a MIP model to solve indi-
vidual DAG sub-problems to optimality and a heuristic approach to solve the
whole problem using a bottom up traversal of the HTG tree. Xia et al [23], also
provided another aspect of HTG, where they bring a hierarchical scheduling
method which schedules DAG structured computations at three different levels
on manycore systems. This is interesting because, our approach is more similar
to this, eventhough this scheduler is for a static set of resources.

Modern datacenter schedulers is also an interesting area to look into. Del-
gado et al [24] presented ’Hawk’, a hybrid scheduler, which falls in a middle
ground between centralized and distributed schedulers where it centralizes the
scheduling of long jobs and schedules the short jobs in a distributed fashion.
’Sparrow’ is another scheduler by Ousterhout et al [25], which takes a purely
distributed resource scheduling approach. ’Mercury’ is another interesting ap-
proach by Karanasos et al [26] where they propose a hybrid resource man-
agement architecture. The key insight is to offload work from the centralized
scheduler by augmenting the resource management framework to include an
auxiliary set of schedulers that make fast/distributed decisions.

6.2 Methadology

The main objective of the HTG task scheduler approach is to overcome the is-
sues and limitations in the existing centralized and distributed task scheduler for
processing the big data analytics applications. The centralized task scheduler
creates huge traffic because all the requests have to go forward and backward
from the workers to the central task scheduler that leads to a performance bot-
tleneck. It provides poor scheduling decisions for long running jobs. However,
the distributed task scheduler has the opportunity to make the scheduling de-
cisions in a distributed way.

However, the combination of centralized and the distributed task scheduler
(hybrid task scheduler) achieves high performance by improving the through-
put of the submitted tasks as well as it reduces the traffic. The centralized
task scheduler acts as a controller which identify the task graphs available in
the hierarchical task graph and schedule the task graphs to the workers. The
distributed task scheduler which is running in every worker makes the schedul-
ing decisions to run their individual tasks. The initial design of hybrid task
scheduler is shown in Figure 2.
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Figure 2: Example Hierarchical Task Graph

The idea is for the users to create a Hierarchical Task Graph consists of
both streaming and batch jobs and pass the jobs using a client (HTG Client).
HTG Client will be responsible of assigning resources for each tasks in the HTG
meta graph. In each task, users will have the full control over the resources
it receives and steps such as resource allocation etc, would be transparent to
the task. Once resources are allocated to a particular task, a message will
be sent from the HG Client to the workers, specifying which task to process.
Upon completion of tasks, workers will send a message to the client that they
have completed the work. These communications are routed via the job master
process. If the downstream tasks have a data dependency, it will be transferred
using the dataset API of the framework. Depending the resource requirement
of the downstream tasks, client will update the resources assigned to the job
and send another message to executed the new tasks. This process will continue
until the client completes all the tasks designated in the HTG graph.

7 Discussion

Since the advent of Map-Reduce paradigm, data analytics have come a long way
in computer engineering domain. There have been number of data analytics
frameworks in the industry at the moment. Resource allocation and scheduling
is at the core of all of these data analytics frameworks. Coarse grained and fine
grained resource scheduling are the two primary approaches these frameworks
have adopted. The current issue with the granularity of the workloads is, users
tend to select frameworks purely on the basis of distributing their workloads,
because of its convenient API. This is not the intended use of such frameworks
and hence it would be suboptimal in the long run. Hence, from this report,
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the authors are trying to propose a new scheme of resource scheduling called
Hierarchical Task Graphs, where both coarse grained and fine grained resource
scheduling can be allocated in the same environment. This would be a more
transparent and composable way to deal with resource scheduling and it would
give more flexibility to the users to make better use of the resources in streaming,
batch as well as iterative workloads.
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